# A Unified Probabilistic Framework for Name Disambiguation in Digital Library

Jie Tang, A.C.M. Fong, Bo Wang, and Jing Zhang

**Abstract**—Despite years of research, the name ambiguity problem remains largely unresolved. Outstanding issues include how to capture all information for name disambiguation in a unified approach, and how to determine the number of people K in the disambiguation process. In this paper, we formalize the problem in a unified probabilistic framework, which incorporates both attributes and relationships. Specifically, we define a disambiguation objective function for the problem and propose a two-step parameter estimation algorithm. We also investigate a dynamic approach for estimating the number of people K. Experiments show that our proposed framework significantly outperforms four baseline methods of using clustering algorithms and two other previous methods. Experiments also indicate that the number K automatically found by our method is close to the actual number.

Index Terms—Digital libraries, information search and retrieval, database applications, heterogeneous databases.

# **1** INTRODUCTION

IFFERENT e a e de a e e ea e а са d. I a ed a e 300 С a e e a 114 e (a а e аe ed b e e ed Sae ab 78.74 e ce ) e U ( :// a е. aba .c ). I ae a e. а ca а С сe fc e a е аае e a d f а аеае ed a e de fe e а e e e .Na ea b e e e e f а ea e а e e e ed f а

be, Т f e a e de e e e e e ed 100 e b ca daaad e a a e e d, f ee a e 54 ed b f e a a e e, a 25 d ffe e ΥN Ζa e DBLP da aba e. A ee 1.5 a ed 'NY L ad a ed f e f de a e ab. а

# 1.1 Motivation

We be b b e e а еa e а d a d ://a e е. ) f a eae ( [40]. I e e ac e ea c e fe e f ebad e a e e b ca da a f e e , C eSee , c a DBLP, ACM D a Lba da aba e d SCI. I ab a e e e e e a e а а e fed e a а b b e . F . 1 а e. I F de de ed). Eac . 1. eac eaae( e d ec ed ed e de e a e a be ee a e

Manuscript received 1 July 2008; revised 5 Apr. 2010; accepted 16 Nov. 2010; published online 27 Dec. 2010.

Recommended for acceptance by B.C. Ooi.

abe e f а e e e e e ea (cf. Sec 2.1 f def f е e a e ). T e d f a ce be de de e ee e а e a e e f e c e -ba ed а ea e (e. ., c e а ). T e d e e e dea d a b а e d ca e C d be a a 11 a e ed ee d ffe e а А ed a e b e а f F . 1 d а а e ba ed e а e d a ce) d be C d ff c ac ее fac a ce. a d а e f а d ffe e e f e a ca be е f b d ffe e . F de ee fc b e a e. e e а CA de #3 a d #8. A еа be ee а be ee e de ,be ef e f e C Α e a e ca а Ο (ae)de e a e a e c а e e a C а e a be ee de #3 а a d #7, d ffe e e а e a e а ed de Т есае e e e а а f e d a b b e а е b а а b f С de b а e а f e de a d e de . e a be ee

#### 1.2 Prior Work

Те b e а bee de e de e a ed d ffe e d , a d a e e а а [3], [20], [4], [5], [7], ea a ce d a b eb a а a e [49]. De de [26], a d Ob ec d f ca С е а а ac e ed, e a e a b b e ρed. а а e e

d f a edaba Ι e e a . e е e : supervised based, unsuperа fa ee ca e vised based, a d constraint based. T e е ed-ba ed (e. ., [17]) е ea ecfcca f ca а ac а f eac e f e a - abe ed de а а da a. T. e., e ea ed de ed c а ed f eac e a e.I ede a а e e ba ed a aç (e. ., [18], [36], [37], [49]), c e f d С de аее ed a e а

J. Tang and J. Zhang are with the Department of Computer Science and Technology, Tsinghua University, Rm 1-308, FIT Building, Beijing 100084, China. E-mail: jietang@tsinghua.edu.cn, zhangjing0544@gmail.com.

A.C.M. Fong is with the School of Computing and Mathematical Sciences, Auckland University of Technology, AUT Tower Level 1, 2-14 Wakefield Street, Auckland 1142, New Zealand. E-mail: afong@aut.ac.nz.

B. Wang is with the Department of Computer Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China. E-mail: bowang@nuaa.edu.cn.

For information on obtaining reprints of this article, please send e-mail to: tkde@computer.org, and reference IEEECS Log Number TKDE-2008-07-0335. Digital Object Identifier no. 10.1109/TKDE.2011.13.

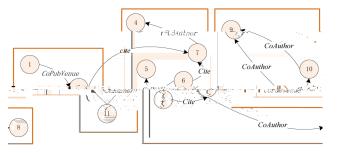



Fig. 1. An example of name disambiguation.

a , a d a e d ffee a a ea ed d ffee a . T e c a -ba ed a ac a e e c e a . T e d ffee ce a e - ded c a a e ed de e c e a a d be e da a (e. , [2], [51]).

E, e e, e e a aç e ba ed , e, ca/a, a, adcba f, edffee a açe, a e bee , d ed. F e a e, W, a e a. [47] d ce a e a e e -ba ed a ac e e e c e ce e da aba e a d de e de fare e ceae, e a e.Da ea.[11] a e de e ed a e ac e e , c e a, e cae, e cc e ce f a ed e e **a e e T**e e **de** f efe e ce a e a bec (e., a a c a b d ) e eaed ae fabec ad acec. McRae-S e ce a d S adb [28] e e a a -ba ed a aça, dab, a a e-caeca e b, ef-ca, ca, ea, .T, e a aç ca aç e e a ec b a e a e eca. Y e a. [50] a e de e ed e ed a ac e de feff fab, abbea ec e e a ea.M e ece ,C e e a.[8] , d c b e edffee dab, a a açe ad eae e eebefae c c b e e e f e bae-e e e e e a e e e e acc ac fe e .W.a ea.[46] e a ea eb c fa e ee ee e, f b c a e efeced b e e ce ed b c . O a d Lee [32] d e ca ab e f e a e d a b a be A c e a bee ade, e e d d ac e e a fac dab, a e, d, e , e a :

1. S e e a c e e d (e., [31], [35], [48]) f c a e da a a ba ed e ca c e; e e e d (e., [18], [42]) a c e e da a a acc d de a A fe e ea c e (e., [38], [52]) c b e e ece f f a F e a e, Z e a a e c b e f a ba ed b e e a b e (.e., de a ) a d a ca c e b f c c a a b e a e ed a e c a e f  $\langle a b e, a e \rangle$ a e c e, a d b e e a e d

a d a de. Tea eca ea a e bee d cad ca f a. A. e a e a e e abe de aea a be a c ea e 🖉 e cee fa ee ce je dace ea, e, a baace, ec b, fedffee fa ae be T, e a e ab e c c, de a add a b e а fa ec e bec e de ade e ac e c e e . E e, [52], ee e e a da a e c a e fe a be.Tef daae( cab) a e(ba)abead e ec d daa e f DBLP bb a cadaa a be. Wea, e, a, c, c, e, dea, b, e, f, ae, edfac , e a edab, abe effec e.

- 2. Te ef a ce fa eaf e e ed e d de ed accae e a K.A e e a c e a c a X- ea [33] ca a a ca f d e be K ba ed e c e , cea e e c a e d ca be d ec a ed e a e d a b a be.
- 3. I e e d, edaa a c a ee de a d ea ; e be e , ee a be e d ffee ea (e.,CA a dCa) be ee de.Te e f d ffee ea a a a e d ffee a ce f e a e d a b a be.H a a ca de e de ee f c b f d ffee ea a c a e be.

# 1.3 Our Solution

Te ed fae e ea. O e ca c a e a a fea e ca fea e e fae , e. , a fea e ba ed e eb ea c e e ed. Te fae ca be a e e ded dea a e be c a e e a e a a da aba e [4].

O. c b. a e c de: 1) f a a f e a e d a b a be a fed babc f a e ; 2) a f a a e e a a e e e a e f a e ; a d 3) a e ca e f ca f e effec e e f e ed f a e .

TABLE 1 Attributes of Each Publication  $p_i$ 

| Attribute                  | Description                                                     |  |  |  |  |
|----------------------------|-----------------------------------------------------------------|--|--|--|--|
| p <sub>i</sub> .title      | title of $p_i$<br>published conference/ioyrnal of $p_{i_{R_i}}$ |  |  |  |  |
| p <sub>i</sub> .pubvenue   |                                                                 |  |  |  |  |
| p <sub>i</sub> .year       | published year of $p_i$                                         |  |  |  |  |
| p <sub>i</sub> .abstract   | abstract of $p_i$                                               |  |  |  |  |
| p <sub>i</sub> .authors    | authors name set of $p_i \{a_i^{(0)}, a_i^{(1)},, a_i^{(u)}\}$  |  |  |  |  |
| p <sub>i</sub> .references | references of $p_i$                                             |  |  |  |  |

# **2 PROBLEM FORMALIZATION**

#### 2.1 Definitions

I ed c af, ea abe eac ae  $p_i$  a Tabe 1. S c b ca da a ca be e ac ed f ce c a DBLP, L b a. a.c., A e e., ad C e ee...ed.

# **Definition 1 (Principle Author and Secondary Author).** Each paper $p_i$ has one or more authors $A_{pi} = \{a_i^{(0)}, a_i^{(1)}, \dots a_i^{(u)}\}$ . We describe the author name that we are going to disambiguate as the principle author $a_i^{(0)}$ and the rest (if any) as secondary authors.

We def e f e e f d ec ed e a be ee a e (Tab e 2). S ec f ca ,

- C P bVe  $e(r_1)$  e e e a e b ed a e a e e e F e a e, f b a e a e b ed a 'NKDD, e c e a e a d e c ed C P bVe e e a be e e a e a e I e, e e a c e e a e a e a d ffe e e e a c f e d b a e a d ffe e e e.
- CA  $(r_2)$  e ee a a ae  $p_1$  ad  $p_2$ a ea ec da a e a e a e, e.,  $A'_{p1} \cap A'_{p2} \neq \emptyset$ , e e $A'_{p1}$  de e e e fa f a e  $p_1$  e c d e c e a  $a_i^{(0)}$ , e.,  $A'_{p1} = A_{p1} \setminus a_i^{(0)}$ . T ca , a e a a e a c c a dbe e a e e .
- Ca  $(r_3)$  e e e e a e c a e a e I e a a a ce e . F e, e c a e a e ca f a a f : If a e  $p_1$  c e a e  $p_2, p_3, \dots, p_n$ , e e e ab d eced a e e a a ced a e, add d eced a e e a be e  $p_1$  a d e c ed a e .
- C a (r<sub>4</sub>) de e c a ed a e feedbac F a ce, e e ca ec f a a e d be d a b a ed e a e e d be d ffe e e
- τ-CA (r<sub>5</sub>) e ee τ-e e CA ea . We ea ea e e a ea . S e a e p<sub>i</sub> a a 'NDa d M c e a d'NA de Ma , a d p<sub>j</sub> a a 'NDa d M c e a d'NFe a d M f d. Weae d a b a e 'NDa d M c e . A d f 'NA de Ma a d'NFe a d M f d a ca a e a e, e e a p<sub>i</sub> a d p<sub>j</sub> a e a 2-CA ea .

TABLE 2 Relationships between Papers

|   | R                             | w     | Relation Name | Description                                 |  |  |  |  |
|---|-------------------------------|-------|---------------|---------------------------------------------|--|--|--|--|
|   | $r_1$                         | $w_1$ | CoPubVenue    | $p_{i}$ .pubvenue = $p_{j}$ .pubvenue       |  |  |  |  |
|   | $r_2$                         | $w_2$ | CoAuthor      | $\exists r, s > 0, a_i^{(r)} = a_j^{(s)}$   |  |  |  |  |
|   | r <sub>3</sub>                | W3 ]  | Citation      | $p_i$ çites $p_i$ or $p_i$ çites $s_{P_i}$  |  |  |  |  |
| - | r <sub>4</sub> w <sub>4</sub> |       | Constraint    | feedback supplied by users                  |  |  |  |  |
| - | r <sub>5</sub> w <sub>5</sub> |       | τ-CoAuthor    | $\tau$ -extension co-authorship ( $\tau$ >1 |  |  |  |  |

Т ae cea, ee a f e ab e e e a e a e a  $\tau$ -CA de e e a , .F. , ee.e ae daae, eca c..., ca ca, e, eeeac, dedeeaaa, a e a deac, ed e de e a c a e a .F a e  $p_1$  a d  $p_2$ , e ca b a e c e dа e  $A'_{p1}$  ad  $A'_{p2}$  be called If a d f  $A'_{p1} \cap A'_{p2} \neq \emptyset$ , e a se aeaCA, e a F de e a 2-e e CA , ec., c. c a \_\_\_\_\_ e  $A_{p1}^2$  a d  $A_{p2}^2$ e a acc decase Secfca,  $A_{p1}^2$ e fa beed  $A_{p1}'$  a e b acc d e e f e a  $A'_{p1}$ , .e.,  $A^2_{p1} = A'_{p1} \cup \{NB(a)\}_{a \in A'_{p1}}$ , e e NB(a)e e f e b f de a. T e , e a e a e  $p_1$  a d  $p_2$ , a e a 2-C A, e a , f a d  $f A_{p1}^2 \cap A_{p2}^2 \neq \emptyset$ . F de e , e , e , a e aea3-ee CA ea , ef e eed $A_{p1}^2$  f daa  $eA_p^3$  f eac aead f e. e. a e a le ec , e a , e . a e a e a 3-C A e a . T e e feac e f e a  $r_i$  de ed b  $w_i$ . E a f e a e f d ffe e e be de c bed Sec 4.

I e a ed a b a be, e a e a ea bec, e ed e e a bea ed e e b e e T e e a e be a ed e d a b a a . We dec be c f a e a cluster atom.

**Definition 2 (Cluster Atom).** A cluster atom is a cluster in which papers are closely connected (e.g., the similarity  $K(x_i, x_j) >$  threshold). Papers with similarity less than the threshold will be assigned to disjoint cluster atoms.

Fd c ea dbe ea ef ae dab, a., Feae, ecaae, ec, ea "e aa f, edab, a a ".F а f.d., ec, ea, eac, a ed-ba ed c, e a o e eca.I add , e def e e c ce f cluster centroid. De ed ec, e aa, eeae ca f e, d f d ece d f a c, e, e da a ea e ... , e ce .e f , e c , e e ... e ce . a d a cacaeda ea ecea fadaa ed = (a, b, c, c, c, e, eа

#### 2.2 Name Disambiguation

Geae a e a, e de e b ca c a e a a e a a  $P = \{p_1, p_2, \dots, p_n\}$ . T e b ca da a e a ca be de ed b e c de a d ed e. We e a ada e e

f e -caed f a e a [13] e e e e daa. P, b ca a d e a a e a b ca a deceda, c eac f ed de .A b e e ee a a e a deac ed e a e a faaeaeaaced ece d de a a fea, e ec . F , e ec , e , e , d (af e dfeade), ea befaaea

fea, e a d, e, e, be f, e cc, e ce a, e a, e.F a, e ca defe, e, b ca f a e a, a f :

**Definition 3 (Publication Informative Graph).** Given a set of papers  $P = \{p_1, p_2, ..., p_n\}$ , let  $r_k(p_i, p_j)$  be a relationship  $r_k$ between  $p_i$  and  $p_j$ . A publication informative graph is a graph  $G = (P, R, V_P, W_R)$ , where each  $v(p_i) \in V_P$  corresponds to the feature vector of paper  $p_i$  and  $w_k \in W_R$  denotes the weight of relationship  $r_k$ . Let  $r_k(p_i, p_j) = 1$  iff there is a relationship  $r_k$  between  $p_i$  and  $p_j$ ; otherwise,  $r_k(p_i, p_j) = 0$ .

S e e e a e K e  $\{y_1, \ldots, y_K\}$  e a e a, a d a b a e e n b ca e ea e e a c e  $y_i, i \in [1, K]$ . M e ec f ca , e a a f a e d a b a ca be def ed a:

- 1. F a edaba be. Tefa a eed c de b caabe fea e a caed eac ae ad eabe ee ae.
- 2. S e be a c ed a ac.Baed ef a a , ea c ed a ac a d e a effce a.
- 3. Dee e befeeK. Gea dabaa a (a a fa-), dee e eac a K.

eea.F e f Ι а a e e e e d a bf edae cea a fed fae . Sec d, bе e а de, e., Ma Rad Fed [16], ae a a de ea a daa. H e e, e ed а faea, eae be b ca ab a c eced b d ffe e e f e a . Ι cea e f feece ( aa ee a), ca a, ab a , c, e. I e , e a e be f e e Kadd a а. сае

## **3 OUR FRAMEWORK**

## 3.1 Basic Idea

We a e bacbea f e a ed a b abe:1) ae a ceedaae e a e abe (be e a ea (); a d 2) a e ed a e e a e abe, f а e a eа a e a a a a a е, a e . A dea d a b , a e , e e b c e a adae b eea a e a . T be, beca e а e a e d ca e baace e e С. е f f а ece

I a e, e ea fedfa e baed Ma Rad Fed [16], [24]. M e acc a e, e

faeb ce-baed fa ad cebaed f a a H dde Ma Ra d Fed de a fea e f c . T e c (HMRF) b de ee fe e f fa aef aeda e f, efea, ef c . T, e a ce f d ffe e e fea a deedae f e d fea ef c .S e HMRF С de c, de b, e, a e e f fea e f c dffee e .S.c.afa e a da a e ffe add a ad a a e : f , а , е , ade-, e ed ea , ed ea , e ed ea . I ae, e fc , . . , е ed ea faedaba,b ed f a /, е ea С a e e de eec de . Sec d, a, a, d e , е de.T.e bec ef c HMRF e HMRF de a e d b f dde a abe bab е be a ac e f de eec , , Ç а е.

## 3.2 Hidden Markov Random Fields

A Ma Ra d Fed ac d bab а d b f abe ( dde a abe) a be e Ma [16]. Ma ecacae f MRF cabe e. de e ed. A H dde Ma Rad Fed a e be f e fa f MRF a d de ed f c ce H dde Ma M de (HMM) [15]. A HMRF а ed f ee c e : a b e ab e e f С a abe  $X = \{x_i\}_{i=1}^n$ , a dde fed f a d a d a ab e  $Y = \{y_i\}_{i=1}^n$ , a d e b d be ee eac a faabe \_\_\_\_e, dde fed.

We f a e ed ab a be a a f a a e d ffe e c e . Le e e a a abe Y be e c e abe dde e a e . dde a ab e  $y_i$  a e a a e f e e E e  $\{1,\ldots,K\}$ , cae e dee fere. Te be a abe Xc e d ae, eeee a d a abe  $x_i$  e e a ed f a c d a d b  $P(x_i|y_i)$  de e ed b e c ebab d dde a ab e  $y_i$ . E e , e a d a ab e Xaea ed be e e a ed c d a de e de a  $ab \in Y$ , .e., f e dde

$$P(X|Y) = \prod_{x_i \in X} P(x_i|y_i).$$
(1)

F .2 e a ca c e f e HMRF f e e a e F . 1. We ee a de e de ed e a e ded be ee e dde a ab e c e d e e a F . 1. T e a e f eac dde a ab e (e. .,  $y_1 = 1$ ) de e e a e e . We d de e d ec e a be ee e b , b e de ca a a e e de c e a e e a .

A HMRF a eca cae f MRF, e bab f e dde a ab e be e Ma d b d b f e a e f e .T., e bab  $y_i$  f , e b e a a ab e  $x_i$  de e d e c, e abe f b e a , a , a e e a  $x_i$ fed [16], [24]. B ef da e a e e f a d d b f e abe c f a e bab Ya ef

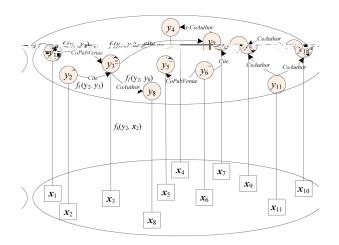



Fig. 2. Graphical representation of the HMRF model.  $f(y_i, y_j)$  and  $f(y_i, \mathbf{x}_i)$  are edge feature and node feature, respectively, and will be described in the next section.

$$P(Y) = \frac{1}{Z_1} \exp\left(\sum_{(y_i, y_j) \in E, k} \lambda_k f_k(y_i, y_j)\right),$$

$$Z_1 = \sum_{y_i, y_j} \sum_{(y_i, y_j) \in E, k} \lambda_k f_k(y_i, y_j)$$
(2)

adbf, eecc e bca daabe eeaed, de e ecaGa ad b, , e ae

$$P(X|Y) = \frac{1}{Z_2} \exp\left(\sum_{x_i \in X, l} \alpha_l f_l(y_i, x_i)\right),$$
  

$$Z_2 = \sum_{y_i} \sum_{x_i \in X, l} \alpha_l f_l(y_i, x_i),$$
(3)

T factore for e d c , e e e e af e , e X de e e , b ca e P a d, e  $x_i$  de e , e e c  $v(p_i)$  f, e a e  $p_i$ .

#### 3.3 Disambiguation Objective Function

We def e a bec e f c a e Ma a-P e c f a f e HMRF, e., b a P(Y|X). P(X) a a e a c a T e ef e, acc d e Ba e e  $P(Y|X) \propto P(Y)P(X|Y)$ , bec e f c ca be def ed a

$$L_{\max} = \log(P(Y|X)) = \log(P(Y)P(X|Y)). \tag{4}$$

 $L_{\rm max}$ 

$$= \log\left(\frac{1}{Z_1 Z_2} \exp\left(\sum_{(y_i, y_j) \in E, k} \lambda_k f_k(y_i, y_j) + \sum_{x_i \in X, l} \alpha_l f_l(y_i, x_i)\right)\right).$$
(5)

E e a , e ab e bec e f c , e e e d f fea e f c , de fea e f c  $f_l(y_i, x_i)$  a d ed e fea e f c  $f_k(y_i, y_j)$ , e e e e a b e f a a caed eac a e a d e e a f a be ee a e , e ec e T e ed e fea e f c  $f_k(y_i, y_j)$  ed c a acee e e a be ee a e . I e , f a e a e a e a e a d a a e a eac e, e e e e a e a e a e be a ed e a e c e . S ec f ca , e ed e fea e f c c a c e e a e e a e e a c a C P bVe e a d C A (a Tabe 2) a d a ea e f a T, e def e e ed e fea e f c a

$$f_k(y_i, y_j) = K(x_i, x_j) \sum_{r_m \in R_{ij}} [w_m r_m(x_i, x_j)].$$
 (6)

He e,  $K(x_i, x_j)$  a a f c be ee a e  $x_i$ a d $x_j; w_m$  e e fea ,  $r_m; R_{ij}$  de e e e f e a be ee  $x_i$  a d  $x_j$ ; a d  $r(x_i, x_j)$  de e af c f e e a be e  $x_i$  ad  $x_j$ . T e e a def e e e a f c  $r(x_i, x_j)$ def e baaeadec bed Def Hee, ef, ec, de a def , c c b e e e f a , .e.,  $r_1(x_i, x_j) = exp\{-|x_i.year - x_j.year|\}.$ T def de edfabea eae ab, be: eCA, adCP, bVe, eeaa e f e e de e de , e. ., a e d b b a eeafc, edc feece/, a e e a ecfce dadca, a ed cabae eace a ecfce d.

Te defea, ef c  $f_l(y_i, x_i)$  a cale e a b e f a a caed a e  $x_i$ . Teba c dea ee f e a e a a e e a e a c e, e e e a e a e bea ed e c e. F c e a e ea, e def e e defea ef c a

$$f_l(y_i, x_i) = K(y_i, x_i) = K(\boldsymbol{\mu}_{(i)}, x_i),$$
(7)

a ed . N a  $K(x_i, \mu_{(i)})$  e e e a e  $x_i$ a ed . N a  $K(x_i, \mu_{(i)})$  e e e a a be ee a e  $x_i$  ad a ed c e ce e  $\mu_{(i)}$ . T e , ... (6) ad (7) (5), e b a

(0) a d (7) = (0), e b a

$$L_{\max} = \sum_{\substack{(x_i, x_j) \in E, k \\ + \sum_{x_i \in X, l}}} \lambda_k K(x_i, x_j) r_k(x_i, x_j)$$

$$(8)$$

e e  $Z = Z_1 Z_2$ . W a f e e a , e c b e e f fed e fea e f c  $\lambda_k$  a d e e f e e a  $w_m$ , a d e a  $\lambda$  f c .

# 3.4 Criteria for Model Selection

We eBaeaIf a C e (BIC) a ece e ae e befe eK.Wedefea bec e f c f edaba a .O a e a aa ee e a a e e ca bec ef c e Kadfda beK a a e e ba bec ef c .

ea, e e de e e e e e e a e c, e , d be bc, e Ne, f eac bc, e, e a a e e ea e e de e e e . T e e a e ea e c d-a fed (e., bc, e ca be ). I e ce, e ca $M_h$  , e de c e d , e be h. We , e ef e , a e a fa fae ae de  $M_h$ , eeh aef 1 *n*, c, e.

N, a c e e be de f  $M_h$ . Ma ea, e e ca be, ed f de e ec , c a S e e C eff c e [23], M De c Le (MDL) [34], A a e I f a C e (AIC) [1], a d e bab e a [22]. We c e BIC a e c e , beca e BIC c e f da e a a jecea, ça MDL adjaa e ea , a , e , e c ea , c a AIC, , c de ab e be Ba ed e e c de a , e e a a a f e BIC ea e e [22] a \_\_\_\_e c \_\_e

$$BIC^{v}(M_{h}) = \log(P(M_{h}|P)) - \frac{|\boldsymbol{\lambda}|}{2} \cdot \log(n), \qquad (9)$$

e e  $P(M_h|P)$  e e bab f de  $M_h$ e e b e a  $P.|\lambda|$  , e be f a a e e  $M_h$  ( c ca be defed diffee a , e. , e be f e aa ee e de  $M_h$  e f e bab e f P(Y)). n e a e be . T e ec da aea de ce. Ie e ce, a BIC ce a ae a -

ae e de  $M_h$  f e e da a e. We e c e f e de eec beca e ca be ea e e ded d ffe e , a . F e a e, c e a c, e a e *K*- ea [27] *X*-ea [33] e a d, e da a a de e de a d e e ac, e a e bab  $P(M_h|P)$  ca be fed  $P(P|M_h)$  acc d e Ba e a e  $P(M_h|P) \propto$   $P(P|M_h)P(M_h)$  b a e  $P(M_h)$  a f . H e e, e e d a e ad a a e f de e de ce be ee e c e e T , e  $P(M_h)$  a , f a a e. O def (2) c de e de e de ce a Ma fe d.

## **4 PARAMETER ESTIMATION**

# 4.1 Algorithm

Teaaeeea be dee eve a, e f, e a a e e  $\Theta = \{\lambda_1, \lambda_2, \dots; \alpha_1, \alpha_2, \dots\}$  a d dee ea e fa ae.Meaccae,e e e e e d bec e f c (8) e ec a c d a de  $P(Y|X, \Theta)$ .

A a e e, e ea a c (cf. A 1) faaeee a a c f eae e : Assignment f a e , a d Update f a a e e  $\Theta$ . Tebac dea a efad cea aa ee e  $\Theta$  ad eec ace df eac c e. Ne, ea eac ae cec, ead, e cac, a e , e ce , d f eac, a e -c , e ba ed , e

Secf ca, eff c de K = 1, a , e e a e . Af e , a e da e e e feac ee soe e a ea. T, e, e, ea fea, ef, c b a se bec ef, c.

| ^'7     | តទូប៉ក់កេតា រិ. Parameter estimation                                                       |
|---------|--------------------------------------------------------------------------------------------|
| <br>I   | nput: <i>P</i> ={ <i>p</i> <sub>1</sub> , <i>p</i> <sub>2</sub> ,, <i>p</i> <sub>n</sub> } |
|         | Dutput: model parameters $\Theta$ and $Y=\{y_1, y_2,, y_n\}$ , where $y_i \in [1, K]$      |
| 1       | . Initialization                                                                           |
| 1       | .1 randomly initialize ogrameters $\Theta_{-}$ ,                                           |
|         | 1.2 for each paper $x_i$ , choose an initial value $y_i$ , with $y_i \in [1, K]$ ;         |
|         | 1.3 calculate each paper cluster centroid $\mu_{(i)}$ ;                                    |
| $x_i$ ) | 1.4 for each paper $x_i$ and each relationship $(x_i, x_j)$ , calculate $f_i(y_i, x_j)$    |
|         | and $f_k(y_i, y_j)$ .                                                                      |
|         | 2. Assignment                                                                              |
|         | 2.1 assign each paper to its closest cluster centroid;                                     |
|         | 3. Update                                                                                  |
|         | 3.1 update of each cluster centroid;                                                       |
|         | $25.2$ upothe $\delta t'$ une weight for each feature function.                            |

F a a , e a d a , e a e feac a a e e ( $\lambda$  a d  $\alpha$ ). F a a f e c e ce d, ef ea a c e e d defec ea Baca, ae a e a a e d be a ed d c e a .We eed a a e e de c bed fa baac, jeae aaje, e a echece du. I a, ee  $\gamma$  chea If $\gamma$  e a e be f e eK, e ee $\gamma$  ae eda aa e If  $\gamma < K$ , e ad c ea e (K- $\gamma$ ) ae a e c e ce d. If  $\gamma > K$ , e e ea e c e a e e a e K ef. We d ce de a e e a a a e e e a a .

Assignments. I Assignments, eac a e  $x_i$  a ed  $\mu_{(h)}$  a  $e \log P(y_i|x_i)$ 

$$\log P(y_{i}|x_{i}) \propto L_{x_{i}}(\mu_{(h)}, x_{i}) \\ = \sum_{(x_{i}, x_{j}) \in E_{i}, R_{i}, k} \lambda_{k} K(x_{i}, x_{j}) r_{k}(x_{i}, x_{j}) \\ + \sum_{l} \alpha_{l} K(x_{i}, \mu_{(h)}) - \log Z,$$
(10)

e e Z de ade a a a fac  $x_i$  a d cabee edae caeab e eaece f c , e., d e e a d ad, e e.H e e, e a e e e f c e a .

N, , , e a cac, aea aa e ce (10).f Tef e (10) a e a c b a , e. a. f. c.  $K(x_i,\mu_{(\iota)})$  ad eea a a f c  $K(x_i,x_j)$ , c cabe cac aed. H e e , acabe ba a eac , f, e a f c, .e., (Z), beca e e a a a d d a e ace , e a ,  $(Z = Z_1 Z_2)$ . A fe a a e bee ed f a a e fe e ce, e. ., be ef a a [30] a d c a e d e e ce (CD) [19]. We ea e a ae e a f.c.ac.a.edeece.,d.ab,a bec ef c.

Baed Jee'e, a [21], eca baa, e b, df, eeae - e, d (L) aK bac-Lebe (KL) de ece

$$L^{KL} = KL(q||P)$$
  
=  $\sum_{y_i} q(y_i|x_i) \log(q(y_i|x_i)) - \sum_{y_i} q(y_i|x_i) \log(P(y_i|x_i))$   
=  $-H(q) - \langle \log(P(y_i|x_i)) \rangle_{q(y_i)},$  (12)

 $e e q(y_i|x_i)$  a a a f e d b  $P(y_i|x_i), \langle . \rangle$  e e ec a de ed b q.

e e KL de ece (12) be ee eda a  $\mathbf{d}$   $\mathbf{b}$   $q^0$  and  $\mathbf{b}$   $\mathbf{e}$   $\mathbf{e}$   $\mathbf{b}$   $\mathbf{d}$   $\mathbf{b}$ e e be a abe,  $q^{\infty}$ , , ee, ef e ca be ca c, a ed b, e b e a , , , e c, e , a , ed abe a d e ec d e , e bab , e e , e de d b a beabe. A a , e b dffc, eabee, a de evec d e . A Ma c a M e Ca (MCMC) e d ca be , ed. e. ae, e.a. a. d. b, .  $q^{\infty}(y_i|x_i)$ e a f MCMC be e ed a  $q^0(y_i|x_i)$ . T a e , e ce deecea [19], ca ae edb b e e a G bb a e ( , e e ). T, e bec ef c bec e

$$L^{KL} = KL(q^0 || P) \approx KL(q^0 || P) - KL(q^l || P)$$
  
=  $\langle \log(P(y_i | x_i)) \rangle_{q^0(y_i)} - \langle \log(q^l(y_i | x_i)) \rangle_{q^l(y_i)}.$  (13)

I c a ed e e ce ea , ead f  $KL(q^0 || q^{\infty})$ , e e e d ffe e ce be ee  $KL(q^0 || q^l)$ a d  $KL(q^l || q^{\infty})$ , e e  $q^l$  ed b e  $e^{q}$ N- e ec c f e da a ec (.e., b e a ) a a e e e a ed af e *l*- e G bb a . A d ca ed [19], e e *l* ca be e a 1 ca e. (T a , e ca c de e G bb a e a e e  $KL(q^0 || q^1)$ ). T e ced e f ec c e da a ec (.e.,  $q^1$ ) f e d b  $q^0$  de c bed A 2.

| Algorithm 2: One-step_sampling                    |  |
|---------------------------------------------------|--|
| Input: current observation $x^0$ and labels $y^0$ |  |

Output: sampling results of  $y^1$  and  $x^1$ 

- Draw an observation x, from the distribution of q<sup>0</sup>(x<sub>i</sub>) (q(x) can be obtained by summing over all possible labels);
- Compute\_P(y,x), the posterior probability\_distribution\_ower\*had had variable given the observation x;
- bility 4: Draw a new label  $y_i^1$  for each observation from the proba distribution  $P(y_i|x)P(y_i|y_{-i})$ ;
- $|y_i\rangle_{x_i}$  5: Given the chosen label, compute the conditional distribution of  $P(x_i)$ itianchai 6: University of the second of the second distribution  $P(x_i|y_i)$ .

Fa, baed e ec ced daa ec, e ca cacae (13). Te caca e e de ad . Tae e effce, e ca e e de c ea fed a [44] e ace e a ced e.

Afe e de (10), eca c e e f e e bec ef c Fa, a eed a ed e e a dae ea e f eac a e A a e fa a e ef ed e ee e e a e fed. Te ce e ea ed a e c a e a e be ee cce e ea .

Update. I U da e, eac c. e ce d f da ed b e a e c ea f e a e c a ed

$$\mu_{(h)} = \frac{\sum_{i:y_i=h} x_i}{\|\sum_{i:y_i=h} x_i\|_{\mathbf{A}}}.$$
(14)

Te, b d ffee a e bec e f c  $\beta$  e ec eac a a e e  $\lambda_k$ , e a e

$$\frac{\partial L}{\partial \lambda_k} = -\sum_{(x_i, x_j) \in E} K(x_i, x_j) r(x_i, x_j) - \frac{\partial \log Z}{\partial \lambda_k}.$$
 (15)

f MCMC be e ed a  $q^0(y_i|x_i)$ . T We ee a e ec d e ac ab e, beca e e eff ce , e ca e e c a e ca c a f Z eed a b e f [19], c a ae ed - a e f eac a e. A a , e a f e KL G bb a e ( e e ). d e e ce bec ef c (13) a d e e CD a ca c a e e de a e f  $L^{KL}$  e ec  $\lambda_k$ 

$$\frac{\partial L^{KL}}{\partial \lambda_k} = \left\langle \frac{\partial \log(P(y_i|x_i))}{\partial \lambda_k} \right\rangle_{q^0(y_i)} - \left\langle \frac{\partial \log(q(y_i|x_i))}{\partial \lambda_k} \right\rangle_{q^1(y_i)} \\
= -\sum_{(x_i, x_j) \in E} K(x_i, x_j) r(x_i, x_j) - \left\langle \frac{\partial \log(q(y_i|x_i))}{\partial \lambda_k} \right\rangle_{q^1(y_i)}.$$
(16)

Tefeeee acba fe a fc adeecde cabecacaed afee1-ea (A 2).

F a , eac a a e e , da ed b

$$\lambda_k^{new} = \lambda_k^{old} + \Delta \frac{\partial L}{\partial \lambda_k},\tag{17}$$

 $ee \Delta$  ee a ae. Wed  $e a ef \alpha$ .

## 4.2 Estimation of *K*

O ae f e a K (ee A 2) a b e a 1 a d e e e BIC c e ea e e e e c e c e T e a e a e . I eac e a , e e e c e C b c e . We ca c a e a ca BIC c e f e e b de  $M_2$ . If BIC $(M_2) >$  BIC $(M_1)$ , e e e c e . We ca c a e a ba BIC c e f e e de. T e ce c e b de e f be f e . F a , e de e e ba BIC c e c e .

| Algorithm | 3. | Estimation | of K |  |
|-----------|----|------------|------|--|
|-----------|----|------------|------|--|

| Inp | out: $P=\{p_1, p_2,, p_n\}$                                                              |
|-----|------------------------------------------------------------------------------------------|
| Ou  | tput: K, $Y = \{y_1, y_2,, y_n\}$ , where $y_i \in [1, K]$                               |
| 1:  | <i>i</i> =0, <i>K</i> =1, that is to view <i>P</i> as one cluster: $C^{(i)} = \{C_1\}$ ; |
| 2:  | do {                                                                                     |
| 3:  | for<br>each cluster $C$ in $C^{(i)}$ {                                                   |
| 4:  | find a best two sub-clusters model $M_2$ for C;                                          |

5:  $if(BIC(M_2) > BIC(M_1))$ 

- 6: split cluster C into two sub clusters  $C^{(i+1)} = \{C_1, C_2\};$
- 7: calculate BIC score for the obtained new model.
- 8: }while(existing split);
- o. j mine(existing spiro),

v. masser nernadel reauting with the bidget of C. score.

O e d ff c e a be f d e be bc e de f e c e C (L e 4). W d ffe a a , e e bc e be d ffe e F a e , be a e a ed f a e , be ef f e c e a de f ca . I d a b a , a c e ca c f e e a c e a . T f e, e e e c e a a a ce d a d a e d e abe e .

F e a a e e  $|\lambda|$  (9), e def e a e f e K c e bab e, a a e e, a d c e ce d, e,

$$\sum_{i=1}^{K} \left( P(y_i) + \mu_{(i)} \right) + \sum_{\lambda \in \Theta} \lambda.$$
(18)

#### **5** EXPERIMENTAL RESULTS

#### 5.1 Experimental Setting

TABLE 3 Data Sets

| Abbr. Name ati      |     | ıblic-<br>ions |     |       | A          | Abbr. Name       |            | ublic-<br>tions | #Actual<br>Person |            |     |               |   |    |
|---------------------|-----|----------------|-----|-------|------------|------------------|------------|-----------------|-------------------|------------|-----|---------------|---|----|
| Chane Bilghanding - |     | ·~· /          | 1   | ^ x J |            | ~ (~ 30/31)g/V+u | 1          | ·~//140         |                   | 101610     |     |               |   |    |
|                     |     | 286            | 286 |       |            | Jing Zhang       | Jing Zhang |                 |                   | 25         |     |               |   |    |
| Yi Li               |     | 42             |     | 21    |            | Kuo Zhang        |            | 6               |                   | 2          |     |               |   |    |
| Jie Tang            |     | 21             |     | 2     |            | Hui Fang         |            | 15              |                   | 3          |     |               |   |    |
| Bin.Yu_             |     | 660            | ,   | 1 12. | ا د        | Leh wang         | , I        | 1 1209          |                   | 1 12       |     |               |   |    |
| Rakesh Kun          | nar | 61             |     | 5     |            | Michael Wagner   |            | 44              |                   | 1          |     |               |   |    |
| Bing Liu            |     | 130            |     | 1     | 1          | Jim Smith        |            | 33              |                   | 4          |     |               |   |    |
| - Ajay Gupt         | a   | 27             |     | 4     | 4 Wei Wang |                  | g          | 306             |                   | 9          |     |               |   |    |
| Dimitry Pav         | lov | 16<br>7        |     | 16    | 16         |                  | 6          | 2               | !                 | David Jens | sen | 43            | ; | 3  |
| Charles Sm          | ith |                |     | 7     |            | h 7              | 7<br>52    |                 |                   | David Bro  | wn  | 53            | ; | 7  |
| David C. Wil        |     |                |     |       | 52         |                  |            |                 | 52                |            | 5   | George Miller |   | 17 |
| James H. Ande       |     |                |     |       | 2          | 112              | 2          | !               | James John        | son        | 17  | (             | 3 |    |
| John Miller         |     | 74             |     | 2     |            | Joseph Miller    |            | 10              | )                 | 2          |     |               |   |    |
| Paul Jones          |     | 13             |     | 3     |            | Richard Tay      | ylor       | 93              | ;                 | 1          |     |               |   |    |
| Robert Fish         | er  | 10             | 5   | 4     |            | Robert Mo        | ore        | 92              | 2                 | 3          |     |               |   |    |
| Robert Willia       | ams | 8              |     | 2     | :          | William Co       | hen        | 110             | 0                 | 2          |     |               |   |    |

Kaace 0.82, c dcaea daeee be ee ea a.F daeee ea a-, ea ed'Na .Tedaae be eaaabe.<sup>1</sup>

We a f, d, a e d a b, a e a e e e e baaced. F e a e, e e a e 286 a e a ed b 'NWe Ga 282 f, e a ed b P f. We Ga f e I e f C a C e e Acade f Sce ce a d f a e a e a ed b e e e e e a ed 'NWe Ga.

We e e a e d e a be ee a e b ac . F e a e, f b a e a e b ed a SIGKDD, e c ea ed a C P bVe e e a be ee e . T e c fe e ce f a e (e. ., I e a a C fe e ce K ed e D c e a d Da a M ) a d ac (e. ., SIGKDD) a e c de ed a e a e.

#### Pairwise Precision

| $_{\#PairsCorrectlyPredictedToSameAuthor}$                                 |
|----------------------------------------------------------------------------|
| = $#TotalPairsPredictedToSameAuthor$                                       |
| PairwiseRecall                                                             |
| $_{\#PairsCorrectlyPredictedToSameAuthor}$                                 |
| = $#TotalPairsToSameAuthor$                                                |
| $PairwiseF_1 = \frac{2 \times PairwisePrecision \times PairwiseRecall}{2}$ |
| PairwisePrecision+PairwiseRecall                                           |

We c de ed e e a ba e e e d ba ed *K*ea [27], SOM [43], a d*X*- ea [33]. T e a e a ed f d e be f e e*K*. I e e e d, e c b e a efea e def ed e d. S ecfca, f e, e a aba f d a d e e a e a

1. ://aee./dab.a.

 TABLE 4

 Results of Name Disambiguation (Percent)

fea, ead, ea, e, ec fee ce a e; f a, ,  $e_{\cdot} e_{a_{-}, \cdot} e_{-} e_{-} e_{-} a_{-} a_{-} a_{-} e_{-} e_{-} e_{-} e_{-} a_{-} a_{$ , e a, , , , , a d def e a fea, e f eac, a, ad ea, e b a (d ca e e ce ); , ef c.a., ea def e , efea, ead, e a, e e a  $\ensuremath{\smile}$  e de f  $\ensuremath{\smile}$  e c ed a e I add. , e c de ed e ba e e e d.T ef e ba ed , eac caa eaec, e (HAC) a f ca ad, eaeace e e edab, aa [39], e a e fea, e def a def ed ab e. T. e ba ed SAC e [52], c e a e de a a Kc, e b, b , c, a a d a b, e f a a c a ed eac de. F fa c a , SAC, e, e , ed, e a e a b, e fea, e def ed , a ac, a d, e a e ea fa.T.e dffeece aSAC.d ffe e a e e e f d ffe e e a e d e , , e c dea ea a ea e SAC e [52].

Wefecaed ed e edfaedaba:DISTINCT [49], a cba edbaed a ea e: e

fea efeades d; f c feece, edefea e eebefeb eadad a bab; fea eadeae ec feeceae; f a , CONSTRAINT [51], ac a -baedc e a e ea e e a a a e e, a , a f a ed a b a . F fa c a , 1) a e a a d defeafea efeac bae e e d a d ec aed e d, e be K a a d e a e b a (d ca e e ce); f eaca a e e a eaca e be; , ef c a , ea defe efea e a d e e e eface e e b d f e e d; a d a e e a e de f ec ed a e. I add , e 2) e d e e feedbac (ea r<sub>4</sub>) c de ed e bae e e d. T ef e baed e e e (a ebae e ca e e e feedbac).

#### 5.2 Experimental Results

#### 5.2.1 Results

We c d c ed d a b a e e e f a e e a ed eac f e a a e e da a e. Tabe 4 e e . I ca be ee a e d c ea e f e ba e e d f a ed a b a  $(+32.77\% \ e \ K-Mea \ , +13.28\% \ e \ HAC, +33.21\% \ e$ SOM, +17.57 e SAC e, a d +10.18% e CON-STRAINT b a e a e F<sub>1</sub> c e).

Tebaeeedffefdadaae:1) ecaaeadaaefeabeeeaead2) eeafeddaceeaeeASAC eceebeeede, caeeeafaaa

 TABLE 5

 Results of Our Approach with Different Settings

| Method                         | Precision | Recall | F1-Measure |
|--------------------------------|-----------|--------|------------|
| Our Approach<br>(Auto K)       | 83.01     | 79.54  | 80.05      |
| Our Approach<br>(w/o auto K)   | 90.13     | 88.26  | 88.80      |
| Our Approach<br>(w/o relation) | 67,05_    | 50,59, | 55,950     |

f ed d a cef c , ca e c de c be e c e a be ee e a e a e . O f a e d ec de e c e a a e de e de ce be ee a e e , a d e a e e da a ea e a f c be ee a e . We c d c ed e e e . T e p a e a e c a e a 0.01, d ca a e e e b a ac a e a ca f ca .

Tabeó, ee, fa ace a fe , be K (, e , be , e , d b ac e , e ac , a be). We ee a ee a ed be b aç a e c e , e ac, a , be . Tab e 5 f , e а eaeaee faac dffee e., ee'N / a K e e e e e f . a ac a edef ed c e be K a d'N / ea eee ee f, a ac , ea (.e., e e a ed e fea, e f c  $f_k(y_i,y_j)$  be e). We ee a e ea e a aç.W., eea, eea, eea efacefa acda (-23.08 ece b F<sub>1</sub> c e). T<sub>2</sub> c f <sub>2</sub> a a de <sub>2</sub> c ca ca, e de e de c e be ee a e , d , e , . deface.

We a ed X- ea f d e be f e e K. We a ed e be a 1 a d a be a n, e a e e a a We f d a X- ea fa f d e ac a be. I a a ec e e ce 'NY L 2. T e ea be a X- ea ca a e f e e a be e a e.

TABLE 6 Result of Automatically Discovered Person Number

|              |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                      |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |   |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|---|
| Person Name  |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                      | P                                                                                                                                                                                           | erson Name                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |   |
|              |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                      |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 001                                                                                                                                                                                                                                                                                                                                                                                          | Trumber                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |   |
| Cheng Chang  | 3                                                                                                                                                                                       | 3 3                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                      | D                                                                                                                                                                                           | mitry Pavlov                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |   |
| Wen Gao      | 4                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                      | Γ                                                                                                                                                                                           | David Jensen                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                              | e                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |   |
| Yi Li        | 21                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              | 13                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                      | David Brown                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |   |
| Jie Tang     | 2                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      | Da                                                                                                                                                                                          | vid C. Wilson                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |   |
| Gang Wu      | 16                                                                                                                                                                                      | 25     10       2     3       12     40       5     1                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                               | 16 12                                                                                                                                                                |                                                                                                                                                                                             | 2 George Miller                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |   |
| Jing Zhang   | 25                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                      | Jar                                                                                                                                                                                         | nes H Anderson                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |   |
| Kuo Zhang    | 2                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                      |                                                                                                                                                                                             | James Johnson                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |   |
| Hui Fang     | 3                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                      |                                                                                                                                                                                             | John Miller                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2_                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |   |
| Bin Yu       |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                   |                                                                                                                                                                                             | Joseph Miller                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |   |
| Lei Wang     |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                               | 22                                                                                                                                                                   |                                                                                                                                                                                             | Paul Jones                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |   |
| Rakesh Kumar |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                    |                                                                                                                                                                                             | Richard Taylor                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |   |
| Michael Wagn | ner                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                   |                                                                                                                                                                                             | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                             | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Robert Fishe                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                             |  | 7 |
| Bing Liu     | Bing Liu                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              | 11 12                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                      |                                                                                                                                                                                             | Robert Moore                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |   |
| Jim Smith    |                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                    |                                                                                                                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 Robert Will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                              | t Williams                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                               |  | 5 |
| Wei Wan      | ıg                                                                                                                                                                                      | 9                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                    | 22                                                                                                                                                                                          | William Co                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cohen I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ι,                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |   |
| Ajay Gu      | pta                                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                      | 6 Charles Sm                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nith                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |   |
|              | Cheng Chang<br>Wen Gao<br>Yi Li<br>Jie Tang<br>Gang Wu<br>Jing Zhang<br>Kuo Zhang<br>Hui Fang<br>Bin Yu<br>Lei Wang<br>Rakesh Kumar<br>Michael Wagr<br>Bing Liu<br>Jim Smith<br>Wei Wan | Person Name     Numb       Cheng Chang     3       Wen Gao     4       Yi Li     21       Jie Tang     2       Gang Wu     16       Jing Zhang     25       Kuo Zhang     2       Hui Fang     3       Bin Yu     1       Lei Wang     1       Rakesh Kumar     1       Michael Wagner     1 | Number     Number       Cheng Chang     3       Wen Gao     4       Yi Li     21       Jie Tang     2       Gang Wu     16       Jing Zhang     25       Kuo Zhang     2       Hui Fang     3       Bin Yu     12       Lei Wang     40       Rakesh Kumar     5       Michael Wagner     10       Bing Liu     11       Jim Smith     5       Wei Wang     9 | Person NameNumberNumberCheng Chang33Wen Gao45Yi Li2113Jie Tang22Gang Wu1612Jing Zhang22Hui Fang33Bin Yu1212Lei Wang4040Rakesh Kumar510Michael Wagner1011Jing Smith52 | Person NameNumberNumberCheng Chang33Wen Gao45Yi Li2113Jie Tang22Gang Wu1612Jing Zhang2516Kuo Zhang22Hui Fang33Bin Yu1210Lei Wang4022Rakesh Kumar55Michael Wagner1011Bing Liu1112Jim Smith55 | Person Name         Number         Number         P           Cheng Chang         3         3         Di           Wen Gao         4         5         II           Yi Li         21         13         II           Jie Tang         2         2         Da           Gang Wu         16         12         G           Jing Zhang         25         16         Jar           Kuo Zhang         2         2         .           Hui Fang         3         3 | Person Name         Number         Number         Person Name           Cheng Chang         3         3         Dimitry Pavlov           Wen Gao         4         5         David Jensen           Yi Li         21         13         David Brown           Jie Tang         2         2         David C. Wilson           Gang Wu         16         12         George Miller           Jing Zhang         25         16         James H_Anderson           Kuo Zhang         2         2         James Iohnson           Hui Fang         3         3         John.Miller           Bin Yu         12         10         Joseph Miller           Lei Wang         40         22         Paul Jones           Rakesh Kumar         5         5         Richard Taylor           Michael Wagner         10         11         Robert Koor           Jim Smith         5         5         Robert Wolliar | Person NameNumberNumberPerson NameNumCheng Chang33Dimitry Pavlov2Wen Gao45David Jensen3Yi Li2113David Brown7Jie Tang22David C. Wilson5Gang Wu1612George Miller2Jing Zhang2516James H_Anderson7Kuo Zhang22James H_Anderson7Bin Yu1210Joseph Miller1Lei Wang4022Paul Jones1Rakesh Kumar55Richard Taylor11Michael Wagner1011Robert Fisher1Bing Liu1112Robert Williams1Wei Wang9022William Cohen | Person NameNumberNumberPerson NameNumberCheng Chang33Dimitry Pavlov2Wen Gao45David Jensen3Yi Li2113David Brown7Jie Tang22David C. Wilson5Gang Wu1612George Miller2Jing Zhang2516James H_Anderson2Kuo Zhang22James Johnson3Hui Fang33John.Miller2Bin Yu1210Joseph Miller2Lei Wang4022Paul Jones3Rakesh Kumar55Richard Taylor10Michael Wagner1011Robert Fisher4Bing Liu1112Robert Moore3Jim Smith55Robert Williams2Wei Wang9022William Cohen4 | Person NameNumberNumberPerson NameNumberNumberNumberCheng Chang33Dimitry Pavlov21Wen Gao45David Jensen36Yi Li2113David Brown75Jie Tang22David C. Wilson55Gang Wu1612George Miller26Jing Zhang2516James H_Anderson27Kuo Zhang22James Johnson36Hui Fang33John Miller27Bin Yu1210Joseph Miller26Lei Wang4022Paul Jones33Rakesh Kumar55Richard Taylor106Michael Wagner1011Robert Fisher46Jim Smith55Robert Williams26Jim Smith55Robert Williams26 |  |   |

TABLE 7 Comparison with DISTINCT

| Po    | rson Name    | [      | DISTING              | Т                  | Ou                   | r Appro              | ach       |
|-------|--------------|--------|----------------------|--------------------|----------------------|----------------------|-----------|
| r ei  | - erson Nume |        | Rec.                 | F1                 | Prec.                | Rec.                 | F1        |
| Cl    | Cheng Chang  |        | 44.19                | 49.03              | 100.00               | 100.00               | 100.00    |
|       | Wen Gao      | 92.07  | 98.68                | 95.26              | 99.29                | 98.59                | 98.94     |
|       | Jie Tang     | 79.36  | 93.37                | 1 85.80            | 1100.00              | 14,00.00             | 1100.00.  |
|       | Jing Zhang   | 100.0  | 0 75.5               | 6 86.0             | 8 83.9               | 1 100.0              | 0 91.25   |
| 0     | 'Kuo Zhang   | 78.    | 57 84.               | 78 81.             | 56 100               | .00 100.             | .00 100.0 |
| 7     | David Jensen | 85.    | 69   100             | .00 92.            | 29 83.               | 83 68.4              | 46 75 3   |
|       | David Bro    |        |                      | 74.99              |                      |                      | 91.45 9   |
|       | David C. W   |        |                      |                    |                      | 94.33                | 67.30 7   |
|       |              |        |                      | 63.11              |                      |                      |           |
| 00.00 | Charles Si   |        | 78.42                |                    | 77.54                |                      |           |
| 00,00 |              |        |                      | 95.00              |                      |                      |           |
|       | Rakesh Ku    |        |                      |                    |                      | 99.14                | 96.91 9   |
|       | Michael Wa   |        |                      |                    |                      |                      |           |
|       | Bing Li      |        |                      |                    |                      |                      | 86.49 8   |
|       | Jim Smi      |        |                      | 90.40              | 88.30                |                      |           |
|       |              |        | 80.80                |                    |                      | 89.17                |           |
|       |              |        |                      |                    |                      |                      |           |
| 4.14  |              |        |                      |                    | 78.45                |                      |           |
| 97.11 | 'Ajay Gi     | ipta – | [^98.70 <sup>L</sup> | [^930 <sup> </sup> | [195.39 <sup>L</sup> | [^97.67 <sup>1</sup> | 96.55     |
| 91.48 | - Avg        |        | 81.04                | 83.82              | 82.14                | 93.78                | 89.80     |

We c a ed a ac DISTINCT [49]. We ed e a e a e e ed b [49] a d e e e f c a . We c d c ed e e e e da a e, c a e e e f da a ed [49]. F e a e, e a e 109 a e f 'NLe Wa ad 33 ae f 'NJ S , e [49] e be a e 55 a d 19. I add , e d c de e P ceed Ed e a . Tab e 7 e c a P ceed Ed e a . Tab e 7 e, We ee, a aeae, e, dcea, e-DISTINCT (+8.34% b F<sub>1</sub>). M e e, a ac f  $a \downarrow e ad a \downarrow a e \downarrow a \downarrow ca a \downarrow a ca f d \downarrow e \downarrow$ be *K*, e ea DISTINCT e be eed be ed b e e Te e a ed DISTINCT a d a ac a e d ffe e . DISTINCT a c de e a - a e a d a e - c fee ce e a , a d d e dec c de eCA, a dCP, bVe, e e a a, , , , , e e a cabede ed f , e a ec feeceada - ae ea

#### 5.2.2 Efficiency Performance

We e a a ede eff c e c e f a ce f a acf e 32 aa e a de c e f eC e Dce (1.6 GH). Tabe 8 e CPU ee ed f ae a e d ffee aabbe a 100 a e a de a e a e e f 100 a d a e. Fa e fa ae e a 1 ec d. T e ae fa aa eac e.

TABLE 8 Comparison of Efficiency Performance (Seconds)

| -   | Person Name          | ĸ-meanš | λ=ivreans | "HAC  | SACluster | DISTINCT            | Our Approach |
|-----|----------------------|---------|-----------|-------|-----------|---------------------|--------------|
| - ' | Wen Gao              | 4.8     | 5.1       | 112.3 | 30.4      | j <sup>5</sup> 56.U | 20.3         |
| _   | Lei Wang             | 3.7     | 2.4       | 6.8   | 4.1       | 12.1                | 4.6          |
| _   | Bing Liu             | 1.6     | 1.9       | 4.2   | 5.4       | 1.1                 | 5.8          |
| _   | Wei Wang             | 28.7    | 5.1       | 73.1  | 46.9      | 83.3                | 100.2        |
| _   | <b>Robert Fisher</b> | 2.8     | 1.3       | 5.6   | 0.2       | 0.2                 | 0.8          |
| _   | William Cohen        | 0.8     | 1.2       | 3.0   | 0.06      | 0.6                 | 0.9          |
|     | Average over<br>100  | 0.52    | 0.26      | 1.14  | 0.96      | 0.87                | 1.42         |

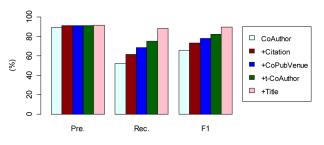



Fig. 3. Contribution of relationships.

#### 5.2.3 Feature Contribution Analysis

We e aed ec b. f e def ed fea e (c, d ed ea d defea e)f a ed a b a . S ecfca, ef a e d d a fea e b e ef a ce, e add efea e eb e e de f e d a b a e.I a c a, ef e e C A, f ed b add C a , a d e C P bVe e, Pa e T e.I eac e, e e a ae e ef a ce f e d.F.3 e a e a e Pec, a e a e Reca, a d a e a e F1-c e f e d dffe e fea e c b a . A eac e, e b e ed ee . We ca a ee a f e fea e (e ce C A) a c b e e e e feca, e e e e e e c ed.

## 5.2.4 Distribution Analysis

aa ade Wea ef ad b ed c e d [10]. We f d a e fea e d b f a a e ca be ca ca e ed e cea:1) bca fdffee e eaaed (NH Fa). Naedaba f a e c ea d f da a cabe ed e eb a ac ad, e, be K ca a bef, d acc, a e ; 2), b caae ed e e b a a a a e f, e a e (e. ., 'NB L, ); , a ac ca aç e e a  $F_1$  c e f 87.36 e ce a d e d c e ed be K c e eac, a be; a d 3), b ca f d ffe e a a e ed (e. ., 'N Z a ). O e d ca b a a e f a ce f 91.25 e ce . H e e, d be d ff c, acc, a e f d e, be K. Fea e, e, bef, db, a ac f 'Nj Z a 14, b e c ec be d be 25. F a [41]. de a ed a a , ea e efe

#### 5.2.5 Application Experiments

Wea ed e a ed a b a e e e f d , c de f e e e e e e e ce. I a c, a, e e a, a e d e f d ad a edaba.Secfca, e e e c ed fe, e, e e f , e, e fA eMe, 12 ad, eda edee ace, de. [6] e, e a, de ceae a da a e fea, a I e e ed eade a e efe ed [51], [40] f de a f e e e e a e .Wec d, cedea, a e f P@5, P@10, P@20, P@30, *R*- ec, ea a e a e ec (MAP), bpref, a d ea ec ca a (MRR). F . 4 e e f e e f d . I F . 4, EF e e e e e fd, aedab,ab, e, dad EF-NA e e e e f d a e d a b a . We ee a c ea e e ca be b a ed b e e edaedabaa ac.



Fig. 4. Performances of expert finding.

#### 5.3 Online System

T f e de ae e effecee f e ed a ac, e a ea ed ed ab a e d e A e e e F 5 a a f e d a b a e T e e eace f 'NeTa ad e e e e eed ffee e e f e a e a d be e de a ed f e f a f eace T e e d a ff e de ad fa e e a ead e e a e ed a b a e f e a 10,000 e a e Pea e e a a ec.V de ecee e cae.

## 6 DISCUSSION

## 6.1 Connections with Previous Work

Weaa e ec ec f fa e eea e daba/ce.

Connection with *K*-means: O fare carde c be ea be ee daa eea *K*-ea [27] ca I e e ce, fare e ed e e a f c de e ea .B e eed e e af c f (8), e are

$$L_{\max} = \sum_{x_i \in X, l} \alpha_l K(x_i, \mu_i) - \log Z.$$
(19)

B f e e e e  $\alpha_l$  f eac a f c , e ba a a e*K*- ea c e a **Connection with X-means:** X- ea [33] ed d a ca f d ec e be K. I a e BIC f de eec . H e e, a de d ffe a e f X- ea , e eec ce a d e c e a a ea d ffe e. T e de eec

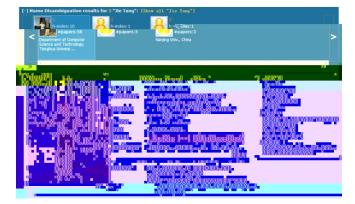



Fig. 5. Name disambiguation system (http://arnetminer.org).

Connection with the constraint-based disambiguation **method:** I c a -ba ed c e , e. ., [2], e e ca , c a , de , e c, e ce . I , , e, a e a e d a b, a a d baed e e [51], [41]. Te a ca c, de , .- a d ca .- .M, - ea , a da a be ed ec e a d ca ea da a be ed d ffe e c e We ca ada f a e a c a -ba ed c, e b edef , e e a f, c .

Connection with disambiguation using spectral graph clustering: Seca a c e [12] a af d , b a , b , c , f e a , be ee da a K- a ec a a c e a a bee e ed f a e d a b a [18]. We ca e a e a e ed daa a f e e e a ed d ffee c, e (.e.,  $I(i \neq j)$ ) e bec ef c . Te, fae caada cebe e ec d a f (8)

$$L_{\min} = -\sum_{(x_i, x_j) \in E, R, k} K(x_i, x_j) r_k(x_i, x_j) + \log Z.$$
(20)

I e e ce, , e b ec e f c ea , a е e e e a e bab e e HMRF a d f c e de e de ce be ee a e. C a e e e , fa e

ffe e e a ad a a e : 1) I ad a e d, a e fae ae deede, ca a e ada a efea beeea e. 2) Teed fa e ca be ea e e ded e - e -ed ea b e feedbac 3) O ed ea fae cabe eedaaeeafae f e e a , , , e , ed e , d .

# 7 CONCLUSION AND FUTURE WORK

ae, e ae e aed e be fae I 🧠 daba. We aef a ed e be a fedfae ad edaeea ed babc de , e be . We a e def ed a d a b , abec ef c f e be a d a e ed a - e aaeee a a . We aea edadaca acfe a . e . be f e e K. E e e a e d ca e a e ed e d f ca e f e ba e e d. We are defined, ceare (+2%)ca be ba ed.

A e e e e , e , d be e e e e e e a e a e , e f , e e f a f a e dab,a,a,eab, beee e e.Mee, a ee d de eLDA ca e a e d a b a. С

# **A**CKNOWLEDGMENTS

T, ea, ., de, ., a H C, e f d

- e cec de fSAC e a dXa Y f d
- e cecde f DISTINCT f ec a ее-
- e. Tea a Pf. P Y f a ab e

ed b e , е . Je Ta Na a SceceF da fC a (N . 61073073), e C e e Na a Ke F da Re ea c (N . 60933013, N .61035004), a d a S ec a F d f FSSP.

# REFERENCES

- [1] H. A a e, 'N Ne L a e S a ca M de Ide f ca-, IEEE Trans. Automatic Control, . AC-19, . 6, . 716-723, Dec. 1974.
- [2] S. Ba, M. Be, ad R.J. M e, 'NA P bab c F a e-f Se -S e ed C e , *Proc. ACM SIGKDD Int'l* Conf. Knowledge Discovery and Data Mining (SIGKDD '04), . 59-68, 2004.
- b6, 2004.
  [3] R. Be e a a d A. McCa , 'ND a b a Web A ea-a ce f Pe e a S ca Ne , Proc. Int'l Conf. World Wide Web (WWW '05), . 463-470, 2005.
  [4] O. Be e , H. Ga ca-M a, D. Me e a, Q. S. , S.E. W a , a d J. W d , 'NS : A Ge e c A ac E Re , The VLDB J., . 18, . 255-276, 2008.
  [5] I. B a ac a a a d L. Ge , 'NC ec e E Re Re a a D a A CM Trans Knowledge Discovery from Data

- Re a a Da a, ACM Trans. Knowledge Discovery from Data, . 1, a c e 5, 2007.
- [6] C. B. c. e ad E.M. V. ee, 'NRe e a E a a I c. ee I f. a , Proc. Ann. Int'l ACM SIGIR Conf. Research and Development in Information Retrieval (SIGIR '04), . 25-32, 2004.
- [7] Z. C. e., D.V. Kaa, , a d.S. Me a, 'NAda e G a ca A ac E Re , Proc. Seventh ACM/IEEE-CS Joint A ac E Re , Proc. Seventh ACM/IEEE-CS Joint Conf. Digital Libraries (JCDL '07), . 204-213, 2007.
- [8] Z.Ce, D.V. Kaa, , ad S. Mea, 'NECe A a f C b M e E Re Se, Се Proc. ACM SIGMOD Int'l Conf. Management of Data (SIGMOD '09), . 207-218, 2009.
- [9] D. C., R. Ca, a a, a d A. McCa, , 'NSe e ed C. e ... U e Feedbac , Tec ca Re TR2003-1892, C e U ., 2003.
- [10] D. Ca, X. He, a d J. Ha, 'NS ec a Re e f D e a
- [11] P.T. Da , D.K. E , a d J.L. K a a , 'Me d f P ec e Na ed E Ma c D a C ec , Proc. ACM/IEEE-CS Joint Conf. Digital Libraries (JCDL '03), . 125, 2003.
- [12] C. D , 'NÁ T a Sec a C e , Proc. Int'l Conf. Machine Learning (ICML '04), 2004.
- [13] M. Ee, R. Ge, B.J. Ga, Z. H., ad B. Be-M. e, N C. e A a f A b e Da a ad Rea Da a: T e C eced K-Ce e P be, Proc. SIAM Conf. Data Mining (SDM '06), 2006.
- [14] S. Ge a ad D. Ge a , 'NS c a c Reaa , G bb D b a de Baea Rea f I a e, IEEE Trans. Pattern Analysis and Machine Intelligence, . PAMI-6, . 6, . 721-742, N . 1984.
- [15] Z. G. a. a. a. d. M.I. J. da , 'NFac. a. H. dde. Ma
- S e ed Lea A ac e f Na e D a b a A C a , Proc. ACM/IEEE Joint Conf. Digital Libraries (JCDL '04), . 296-305, 2004.
- [18] H. Ha, H. Za, ad C.L. Ge, 'NA eDaba A CaU aK-WaSecaC e Me d, Proc. ACM/
- IEEE Joint Conf. Digital Libraries (JCDL '05), . 334-343, 2005.
  [19] G.E. H, 'NT a P d c f E e b M C a e D e e ce, J. Neural Computation, . 14, . 1771-1000 2000 1800, 2002.
- [20] L. Ja, J. Wa, N. A, S. Wa, J. Za, ad L. L., 'NGRAPE: A Ga-Baed Fae f Daba PeeA eaace Web Sea c , Proc. Int'l Conf. Data Mining (ICDM '09), . 199-208, 2009.
- [21] M.I. J da, Z. G a a a , T. Jaa a, a d L. Sa, 'NA I d c Va a a Me d f G a ca M de, Learning in Graphical Models, . 37, . 105-161, 1999.
- [22] R. Ka a d L. Wa e a 'N Refe e c Ba e a Te f Ne ed H e e a d I Rea eSc a C e , J. Am. Statistical Assoc., 90, 773-795, 1995.

- [23] L. Kafaad P. Ree, Finding Groups in Data: An Introduction to Cluster Analysis. We, 1990.
- [24] R. K de a a d J.L. S e , Markov Random Fields and Their Applications. A . Ma . S c., 1980.
- [25] H. K. C., S. Gea, ad A. Keaa, 'NH dde Ma Rad Fed, J. Annals of Applied Probability, 5, 3, 577-602, 1995.
- [26] X. L., P. M. e, D. R., 'Nde f ca a d T ac f A b, Na e: D c a ead Ge e a e A ac e, Proc. 19th Nat'l Conf. Artificial Intelligence (AAAI '04), . 419-424, 2004.
- [27] J. MacQ ee, 'NS e Me d f C a f ca a d A a f M a a e Ob e a , Proc. Fifth Berkeley Symp. Math. Statistics and Probability, 1967.
- [28] D.M. McRae-S e ce a d N.R. S adb , 'NA b e Sa e A : AKT eA , a C a G a A ac Na e D a b a , Proc. ACM/IEEE Joint Conf. Digital Libraries (JCDL '06), . 53-54, 2006.
- [29] É. M , W.W. C e , a d A.Y. N , 'NC e a Seac a d Na e D a b a E a U G a , Proc. 29th Ann. Int'l ACM SIGIR Conf. Research and Development in Information Retrieval (SIGIR '06), 27-34, 2006.
- [30] K.P. M., Y. We, a d M.I. J da, 'N. Be ef P a a f A a e I fe e ce: A E ca S d, Proc. Conf. Uncertainty in Artificial Intelligence (UAI '99), . 467-475, 1999.
- [31] M.E.J. Ne a ad M. G a, NF d ad E a a C S c e Ne , Physical Rev. E, 69, .026113, 2004.
- [32] B. O a d D. Lee, 'Nsca ab e Na e D a b a U M -Le e G a Pa , Proc. SIAM Int'l Conf. Data Mining (SDM '07), 2007.
- [33] D. PeeadA. Me, 'NK-Mea: Eed K-Mea EffceEafeN befCe, Proc. Int'l Conf. Machine Learning (ICML '00), 2000.
- [34] J. Rae, 'NAU ea Pf Ieead Eab M Dec Le, J. Annals of Statistics, .11, .2, .416-431, 1983.
- [35] J. S a d J. Ma , 'N a ed C a d I a e Se e a , IEEE Trans. Trans. Pattern Analysis and Machine Intelligence, 22, . 8, . 888-905, A . 2000.
- [36] L. S., B. L., a d. W. Me, 'NA Lae T. c. M. de f. C. e e E. Re, Proc. IEEE Int'l Conf. Data Eng. (ICDE '09), . 880-891, 2009.
- [37] Y. S , J. H a , I.G. C c , J. L , a d C.L. G e , 'NEff c e T c-Ba ed U e ed Na e D a b a , Proc. ACM/ IEEE Joint Conf. Digital Libraries (JCDL '07), . 342-351, 2007.
- [38] Y. S., Y. Y., a d J. Ha, 'NRa -Ba ed C. e f He e e e I f a Ne Sa Ne Sc ea, Proc. ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (SIGKDD '09), 2009.
- [39] Y.F. Ta, M. Ka, ad D. Lee, 'Nseac E e D e A D a b a , Proc. ACM/IEEE Joint Conf. Digital Libraries (JCDL '06), . 314-315, 2006.
- [40] J. Ta, J. Za, L. Ya, J. L. J. L. Za, a d Z. S. 'NA e M e: E ac a d M f Acade c S ca Ne , Proc. 14th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (SIGKDD '08), 2008.
- [41] J. Ta, L. Ya, D. Za, ad J. Za, 'NA C ba A ac Web U e P f , ACM Trans. Knowledge Discovery from Data, .5, a c e 2, Dec. 2010.
- [42] Y. Ta, R.A. Ha, a d J.M. Pae, 'Neff ce A e a f G a S a a , Proc. ACM SIGMOD Int'l Conf. Management of Data (SIGMOD '08), 567-580, 2008.
- [44] M. We a d G.E. H , 'NA Ne Lea A f Mea F e d B a Mac e , Proc. Int'l Conf. Artificial Neural Networks (ICANN '01), . 351-357, 2001.
- [45] M. We a d K. K a a, 'NBa e a K-Mea a a'NMa a--E ec a A , Proc. SIAM Int'l Conf. Data Mining (SDM '06), . 472-476, 2006.
- [46] S.E. W. a , D. Me e a, G. K a, M. T e bad, a d H. Ga c a-M a, 'NE Re I e a e B c , Proc. ACM SIGMOD Int'l Conf. Management of Data (SIGMOD '09), 219-232, 2009.

- [48] X. X., N. Y., Z. Fe, a d T.A.J. Sc e e, 'Nsca: A S. c. a C. e. A. f. Ne, Proc. ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (SIGKDD '07), .824-833, 2007.
- [49] X. Y. J. Ha, a d P.S. Y. , 'Nobec D c : D Obec Ide ca Na e, Proc. Int'l Conf. Data Eng. (ICDE '07), 1242-1246, 2007.
- [50] H. Y., W. K., V. Ha a , a d J. W b , 'NA La e Sca e, C -Ba ed A ac f A a ca D a b a B ed ca Abb e a , ACM Trans. Information Systems, . 24, . 3, . 380-404, 2006.
- [51] D. Za, J. Ta, J. L, ad K. Wa, 'NA Ca-Baed P bab cFae f NaeDaba, Proc. ACM Conf. Information and Knowledge Management (CIKM '07), 1019-1022, 2007.
- [52] Y. Z., H. C. e., a d. J.X. Y., 'NG a. C. e. Ba ed S. c. a / A. b. e.S. a. e., Proc. VLDB Endowment, 2, .1, .718-729, 2009.



**Jie Tang** is an associate professor at Tsinghua University. His research interests are social network analysis, data mining, and semantic web.



**A.C.M. Fong** is a professor in the School of Computing and Mathematical Sciences, Auckland University of Technology. He has published widely in the areas of data mining and communications.



**Bo Wang** is currently working toward the PhD degree from Nanjing University of Aeronautics and Astronautics. His research interests include transfer learning and information network analysis.



**Jing Zhang** received the MS degree from Tsinghua University in 2008. Her research interests include information retrieval and text mining.

 For more information on this or any other computing topic, please visit our Digital Library at www.computer.org/publications/dlib.