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Transfer Learning to Infer Social Ties across Heterogeneous
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Interpersonal ties are responsible for the structure of social networks and the transmission of informa-
tion through these networks. Different types of social ties have essentially different influences on people.
Awareness of the types of social ties can benefit many applications, such as recommendation and community
detection. For example, our close friends tend to move in the same circles that we do, while our classmates
may be distributed into different communities. Though a bulk of research has focused on inferring particular
types of relationships in a specific social network, few publications systematically study the generalization
of the problem of predicting social ties across multiple heterogeneous networks.

In this work, we develop a framework referred to as TranFG for classifying the type of social relationships
by learning across heterogeneous networks. The framework incorporates social theories into a factor graph
model, which effectively improves the accuracy of predicting the types of social relationships in a target
network by borrowing knowledge from a different source network. We also present several active learn-
ing strategies to further enhance the inferring performance. To scale up the model to handle really large
networks, we design a distributed learning algorithm for the proposed model.

We evaluate the proposed framework (TranFG) on six different networks and compare with several existing
methods. TranFG clearly outperforms the existing methods on multiple metrics. For example, by leveraging
information from a coauthor network with labeled advisor-advisee relationships, TranFG is able to obtain
an F1-score of 90% (8%–28% improvements over alternative methods) for predicting manager-subordinate
relationships in an enterprise email network. The proposed model is efficient. It takes only a few minutes to
train the proposed transfer model on large networks containing tens of thousands of nodes.

CCS Concepts: � Human-centered computing → Collaborative and social computing; � Informa-
tion systems → Information systems applications; World Wide Web; � Networks → Network Types
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1. INTRODUCTION

In social networks, interpersonal ties generally fall into three categories: strong, weak,
or absent. It is argued that more novel information flows to individuals through weak
ties rather than strong ties [Granovetter 1973], while strong ties gather close friends
into the same social circles [Krackhardt 1992]. Dunbar’s number [Gladwell 2001] sug-
gests that the number of people who can maintain stable social relationships lies
between 100 and 230, commonly viewed as a value of 150. But the types of rela-
tionships would be very different. For example, among the 150, you may have five
intimate friends, 15 family members, 35 colleagues (or classmates), and other acquain-
tances [Goncalves et al. 2011].

The rapid development recently of online social networks (e.g., Facebook, Twitter,
LinkedIn, YouTube, and Slashdot) offers the opportunity to study the underlying pat-
terns of social ties. For example, Facebook announced that it had hit a billion active
accounts in October 2012. Tencent, one of the largest social networking services in
China, has nearly 800 million users. People are connected via different types of social
ties, and the influence between people varies largely with the type of social tie. For in-
stance, in a mobile communication network, interpersonal ties can be roughly classified
into four types: family, colleague, friend, and acquaintance. Colleagues have a strong
influence on one’s work, while friends have a strong influence on one’s daily life. In
an enterprise email network, where people are connected by sending/receiving emails
to/from others, the ties between people can be categorized as manager-subordinate,
colleague, and so forth. There is little doubt that behaviors in the email network are
governed by the different types of relationships between senders and receivers.

Awareness of these different types of social relationships can benefit many applica-
tions. For example, if we can extract friendships between users from a mobile commu-
nication network, we can leverage the friendships for a “word-of-mouth” promotion of
a new product. However, such information (relationship type) is usually unavailable in
online networks. Users may easily add links (relationships) to others by clicking “friend
request,” “follow,” or “agree” but do not often take the time to create labels for each re-
lationship. Indeed, one survey of mobile phone users in Europe shows that only 16%
of users had created contact groups on their mobile phones [Roth et al. 2010]; our pre-
liminary statistics on LinkedIn data also shows that more than 70% of the connections
have not been well labeled. In addition, the availability of the types of relationships in
different networks is very unbalanced. In some networks, such as Slashdot, it might
be easy to collect the labeled relationships (e.g., trust/distrust relationships between
users). Facebook and Google+ provide a function to allow users to create “circles” (or
“lists”) [McAuley and Leskovec 2014]. However, in many other networks, it would be
difficult to obtain the labeled information. Can we automatically predict the types of
relationships in a social network? The difficulties of fulfilling the task vary largely
in different networks. Can we leverage the available labeled relationships from one
(source) network to help predict the types of relationships in another different (target)
network? The problem is referred to as transfer link prediction across heterogeneous
networks. Compared to traditional research on inferring social ties in one network (e.g.,
Wang et al. [2010], Crandall et al. [2010], and Tang et al. [2011]), this problem exhibits
very different challenges:

First, no common features: as the two networks (source and target) might be very
different, without any overlap, it is challenging to directly apply an existing transfer
learning approach to this task. Figure 1 gives an example of link prediction across
a product reviewer network derived from Epinions.com and a mobile communication
network derived from a university. In the product reviewer network (called source net-
work), we have labeled (trust and distrust) relationships and our goal is to leverage this
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—We present several active learning strategies to enhance the learning performance
of the proposed model. To scale up the model to large social networks, we develop a
distributed learning algorithm.

—We evaluate the proposed model on six different networks: Epinions, Slashdot,
MobileU, MobileD, Coauthor, and Enron. We show that the proposed model can sig-
nificantly improve the performance (on average +14% in terms of F1-measure) for
predicting social ties across different networks comparing with several alternative
methods.

—Our study also reveals several interesting phenomena for social science: (1) social
balance is satisfied on friendship (or trust) networks, but not (<20% with a large
variance) on user communication networks (e.g., mobile communication network);
(2) users are more likely (up to +152% higher than chance) to have the same type
of relationship with a user who spans a structural hole;1 and (3) two strong ties are
more likely to share the same type (15 times higher on Enron and Coauthor) than
two weak ties.

This article is an extension of prior work [Tang et al. 2012]. Compared to the prior
work, we have the following new contributions: (1) proposal of a new problem of ac-
tive transfer link prediction and development of several effective strategies to address
this problem; (2) development of a distributed learning algorithm for the proposed
model framework; (3) investigation of a new social theory—Strong/Weak hypothesis—
in various social networks; and (4) empirical evaluation of effectiveness of the newly
proposed algorithm for active transfer link prediction and scalability performance of
the distributed learning algorithm. Figure 2 shows a performance comparison of four
algorithms for active link prediction on four different datasets. Clearly, the proposed
Maximum Model Influence (MMI) performs much better than the other comparative
algorithms. Figure 3 shows the scalability performance of the distributed learning al-
gorithm for the TranFG model. The distributed learning algorithm is very efficient,
achieving ∼9× speedup with 12 cores.

The rest of the article is organized as follows. Section 2 introduces the datasets used
in this study. Section 3 formulates the problem. Section 5 presents our observations
over the different networks. Section 6 explains the proposed model and describes the
algorithm for learning the model. Section 7 presents the active learning algorithm to
enhance the proposed model. Section 8 presents the distributed learning algorithms
for the proposed model. Section 9 gives the experimental setup and results. Finally,
Section 10 discusses related work, and Section 11 concludes.

2. DATA DESCRIPTION

We study the problem of transfer link prediction on six different networks: Epinions,
Slashdot, MobileU, MobileD, Coauthor, and Enron.

Epinions is a network of product reviewers. The dataset is from Leskovec et al.
[2010b]. Each user on the site can post a review for any product and other users rate
the review with trust or distrust. In this data, we created a network of reviewers
connected with trust and distrust relationships. The dataset consists of 131,828 users
and 841,372 relationships, of which about 85.0% are trust relationships; 80,668 users
received at least one trust or distrust relationship. Our goal on this dataset is to predict
the trust relationships between users.

Slashdot is a network of friends. Slashdot is a site for sharing technology-related
news. In 2002, Slashdot introduced the Slashdot Zoo, which allows users to tag each
other as “friends” (like) or “foes” (dislike). The dataset is composed of 77,357 users

1Structural hole is a concept from sociology [Burt 1992] and will be elaborated in the following sections.
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Table I. Statistics of Six Datasets

Relationship Dataset #Nodes #Relationships (Positive)

Trust Epinions 131,828 841,372 (715,166)
Friendship Slashdot 77,357 516,575 (396,213)
Friendship MobileU 107 5,436 (157)

Manager-subordinate MobileD 232 3,567 (242)
Advisor-advisee Coauthor 1,310 6,096 (514)

Manager-subordinate Enron 151 3,572 (133)
Numbers in round brackets indicate “positive” relationships, respec-
tively corresponding to trust, friend, friend, manager-subordinate, advisor-
advisee, and manager-subordinate relationships in the six datasets.

text message) with each other or co-occurred in the same place, we create a relationship
between them. In total, the data contains 5,436 relationships. Our goal is to predict
whether two users have a friend relationship. For evaluation, all users are required to
complete an online survey, in which 157 pairs of users are labeled as friends.

MobileD is a relatively larger mobile network of enterprise, where nodes are em-
ployees in a company and relationships are formed by calls and short messages sent
between each other during a few months. In this mobile network, each user is labeled
with his or her position (such as manager or ordinary employee) in the company. In
total, there are 232 users (50 managers and 182 ordinary employees) and 3,567 re-
lationships (including calling and texting messages) between the users. The objective
here is to predict manager-subordinate relationships between users based on their
mobile usage patterns.

Coauthor is a network of authors. The dataset, crawled from ArnetMiner.org [Tang
et al. 2008], is composed of 815,946 authors and 2,792,833 coauthor relationships. In
this dataset, we attempt to predict advisor-advisee relationships between coauthors.
For evaluation, we created a smaller ground truth data using the following method:
(1) collecting the advisor-advisee information from the Mathematics Genealogy project2

and the AI Genealogy project3 and (2) manually crawling the advisor-advisee in-
formation from researchers’ homepages. Finally, we have created a dataset with
1,310 authors and 6,096 coauthor relationships, of which 514 are advisor-advisee
relationships.

Enron is an email communication network [Diehl et al. 2007]. It consists of 136,329
emails sent among 151 Enron employees. Two types of relationships, that is, manager-
subordinate and colleague, were annotated between these employees. Our goal on this
dataset is to predict manager-subordinate relationships between users. There are in
total 3,572 relationships, of which 133 are manager-subordinate relationships.

http://www.genealogy.math.ndsu.nodak.edu
http://aigp.eecs.umich.edu
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Slashdot (S) to Epinions (T), Epinions (S) to MobileU (T), Slashdot (S) to MobileU
(T), MobileU (S) to Slashdot (T), and MobileU (S) to Epinions (T). However, as the
size of MobileU is much smaller than the other two networks, the performance was
considerably worse. In the experiment, thus, we only report results of the first four
pairs of networks. (Cf. Table III for details.) For predicting undirected relationships,
we tried all possible transfer link prediction tasks and report results in Table IV.

3. PROBLEM DEFINITION

In this section, we first give several necessary definitions and then present the prob-
lem formulation. To simplify the explanation, we frame the problem with two social
networks, a source network and a target network, although the generalization of this
framework to a multiple-network setting is straightforward.

A social network can be represented as G = (V, E), where V denotes a set of users and
E ⊂ V × V denotes a set of relationships between users. In our problem, each relation-
ship has a label to indicate the type of relationship. We may have the label information
for some relationships, which is encoded as EL, and for the other relationships encoded
as EU , we do not have the label information, where E = EL ∪ EU .

Our general objective is to predict the types of relationships in EU based on the
available information in the social network. More specifically, let X be an |E| × d
attribute matrix associated with relationships in E, with each row corresponding to a
relationship, each column corresponding to an attribute, and the element xij denoting
the value of the jth attribute of relationship ei. The label of relationship ei is denoted
as yi ∈ Y, where Y is the possible space of the labels (e.g., family, colleague, classmate).
In principle, the label can be an arbitrary discrete value, but in this work, for easy
explanation, we will focus on the binary case, for example, friend versus nonfriend
in the Mobile network, advisor-advisee versus colleague in the coauthor network, or
trust versus distrust in the Epinions network. Given this, we could have the following
definition of a partially labeled network.

Definition 3.1. Partially Labeled Network: A partially labeled network is de-
scribed as a five-tuple G = (V, EL, EU , X, Y ), where V is a set of users, EL is a set
of labeled relationships, EU is a set of unlabeled relationships, X is an attribute ma-
trix associated with all relationships, and Y is a set of labels corresponding to the
relationships in E = EL ∪ EU , with yi ∈ Y denoting the type of relationship ei.

When studying the link prediction problem in a single network, the input is a par-
tially labeled network G = (V, EL, EU , X, Y ), and the goal is to predict the unknown
labels {y} in Y . In this work, we study the link prediction problem across multiple net-
works. When considering two networks, the input to our problem consists of two par-
tially labeled networks GS (source network) and GT (target network) with |EL

S| � |EL
T |

(with an extreme case of |EL
T | = 0). Please note that the two networks may be totally

different (with different sets of vertexes, i.e., VS ∩ VT = ∅, and different attributes
defined on relationships), such as a product reviewer network and a mobile communi-
cation network.

In different social networks, the relationship could be undirected (e.g., friendships
in a mobile network) or directed (e.g., manager-subordinate relationships in an en-
terprise email network). To keep things consistent, if no ambiguity exists, we will
concentrate on the undirected network, though we will also talk about directed net-
works. In the undirected network, if we predict a directed relationship label (e.g., the
manager-subordinate relationship), then we consider each undirected relationship as
two directed relationships. In addition, the label of a relationship may be static (e.g.,
the family-member relationship) or change over time (e.g., the manager-subordinate
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relationship). In this work, we focus on static relationships. Thus, formally, we can
define the following problem:

PROBLEM 1. Transfer Link Prediction Across Social Networks: Given a source
network GS with abundantly labeled relationships and a target network GT with
a limited number of labeled relationships, the goal is to transfer learn a predictive
function

f : (GT |GS) → YT

for predicting the types of relationships in the target network by leveraging the super-
vised information (labeled relationships) from the source network.

Without loss of generality, we assume that for each possible type yi of relationship ei,
the predictive function will output a probability p(yi|ei); thus, our task can be viewed
as to obtain a triple (ei, yi, p(yi|ei)) for each relationship ei in the social network.

It is worth noting that though we say there is only a limited number of labeled
relationships in the target network, the labeled information is still very important.
Without them, it is not clear what the learning task is in the target network, as the
source and the target networks may have different prediction tasks. On the other
hand, our assumption is that obtaining labeled relationships in the target network is
often expensive. Hence, one more challenge is how to minimize the number of labeled
relationships in the target network without hurting the prediction performance.

There are several key issues that make our problem formulation different from
existing works on social relationship mining [Crandall et al. 2010; Diehl et al. 2007;
Tang et al. 2011; Wang et al. 2010]. First, the source network and the target network
may be very different, for example, a coauthor network and an email network. What are
the fundamentally common factors that form the structure of the networks? Second, the
labels of relationships in the target network and those of the source network could be
different. How reliably can we predict the labels of relationships in the target network
by using the information available in the source network? Third, as both the source
and the target networks are partially labeled, the learning framework should consider
not only the labeled information but also the unlabeled information.

4. BASIC PREDICTIVE MODELS

We first describe several basic predictive models for learning to predict social ties in
social networks.

4.1. Link Prediction in Single Network

When considering a single network, the problem can be cast as a classification problem.
For the input network G = (V, EL, EU , X, Y ), each relationship ei is associated with an
attribute vector xi and a label yi indicating the type of relationship. Then the task is to
find a classification model to predict the label of relationships in EU . A straightforward
idea is to use existing algorithms such as Support Vector Machines (SVMs) or Logistic
Regression to train the classification model [Leskovec et al. 2010a]. If one further
wants to consider the correlation among the predictive results {y}, then a graphical
model such as Conditional Random Fields (CRFs) or Factor Graph Model (FGM) is
preferable [Tang et al. 2011].

We use SVMs [Cortes and Vapnik 1995] as the example to explain how to predict
social ties in a single social network. Given the labeled relationships in the input
network G, we can construct a training dataset (x1, y1), . . . , (xN, yN), where xi is the
attribute vector associated with relationship ei and yi corresponds to its label. There
are generally two stages in the classification model, that is, learning and prediction.
In learning, one attempts to find an optimal separating hyperplane that maximally
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Transfer Learning to Infer Social Ties across Heterogeneous Networks 7:9

separates different categories of training examples. The hyperplane corresponds to
an SVM classifier. It is theoretically guaranteed that the linear classifier obtained in
this way has small generalization errors. Linear SVM can be further extended into
nonlinear SVMs by using kernel functions such as Gaussian and polynomial kernels.
In prediction, one can use the trained classification model to predict the unknown label
of relationships in EU . The process of applying logistic regression in the task is similar
to that of Support Vector Machines.

The SVM-based method cannot model the correlation between the predictive results
{y} by assuming that they are independent of each other. In real social networks, this
may be not the case. For example, in a coauthor network, predicting one coauthor rela-
tionship as an advisor-advisee relationship would correlate with the prediction result
of another coauthor relationship. We will explain how we consider such correlation in
Section 6.

4.2. Transfer Learning Across Networks

To transfer the knowledge from the source network into the target network, one could
consider a transfer learning model. We briefly introduce a baseline transfer learning
model, coclustering-based transfer learning (CoCC) [Dai et al. 2007a].

The basic idea of CoCC is to transfer the labeled information from a set Di of “in-
domain” documents to another set Do of “out-of-domain” documents. CoCC uses co-
clustering as a bridge to propagate the labeled information from the in-domain to
out-of-domain. Coclustering on out-of-domain data aims to simultaneously cluster the
out-of-domain documents Do and words W into |C| document clusters and k word clus-
ters, respectively. Here C is the label space for the two domains.

Mathematically, CoCC tries to optimize the following loss function for coclustering-
based learning:

I(Do;W) − I(D̂o; Ŵ) + λ · (I(C;W) − I(C; Ŵ)), (1)

where I(Do;W) measures the mutual information between documents and words; D̂o
denotes the clustering of documents; Ŵ denotes the clustering of words; I(Do;W) −
I(D̂o; Ŵ) defines the loss in mutual information between documents and words before
and after clustering; and, analogously, I(C;W) − I(C; Ŵ) defines the loss in mutual
information between class labels C and words W before and after clustering. By min-
imizing this objective function and building a mapping between D̂o and C, CoCC is
able to assign classes to documents in Do according to the cluster membership, which
enables the coclustering-based transfer learning.

Limitations. To deal with our problem, CoCC has three disadvantages. First, it makes
an assumption that the labels of the in-domain and the out-of-domain data are drawn
from the same label set. Second, it assumes that features in the two domains have a
large overlap. Last, it is not easy to incorporate various correlation features such as
the social-theory-based features into the CoCC model.

5. SOCIAL PATTERNS

We now engage in some high-level investigations of how different factors influence
the formation of different social ties in different networks. Generally, if we consider
predicting particular social ties in a specific network (e.g., mining advisor-advisee
relationships from the Coauthor network [Wang et al. 2010]), we can define domain-
specific features and learn a predictive model based on the labeled training data. The
problem becomes very different when dealing with multiple heterogeneous networks,
as the defined features in different networks may be significantly different. To this end,
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Fig. 9. Opinion leader. OL - Opinion leader; OU - Ordinary user. Probability that two types of users have
a directed relationship (from higher social status to lower status, i.e., manager-subordinate relationship
in Enron and advisor-advisee relationship in Coauthor). Average indicates the average probability that two
random users have a relationship of high-status to lower-status user. It is clear that opinion leaders (detected
by PageRank) are more likely to have a higher social status than ordinary users.

with the highest probabilities in the three networks. In practice, some patterns such
as 111 seem to be unreasonable. However, there still exist some cases in real networks,
for various reasons. In our problem, we are interested in understanding to what extent
this case is unreasonable and how different networks correlate on this social pattern.
The pattern correlation will be used to transfer information from the source network
to the target network.

Opinion Leader. The two-step flow theory was first introduced in Lazarsfeld et al.
[1944] and later elaborated in the literature [Katz 1957; Katz and Lazarsfeld 1955].
The theory suggests that ideas (innovations) usually flow first to opinion leaders and
then from them to a wider population. In the enterprise email network, for example,
managers may act as opinion leaders to help spread information to subordinates.

Our basic idea here is to examine whether “opinion leaders” are more likely to have a
higher social status (manager or advisor) than ordinary users. To do this, we first cate-
gorize users into two groups (opinion leaders and ordinary users) by PageRank.6 There
is considerable research on opinion leader. For example, Song et al. [2007] present
a PageRank-like algorithm (referred to as InfluenceRank) to identify opinion leaders,
and Wang et al. [2011] propose an algorithm to find kernel members (elite users) in
a social network. However, designing new measures for finding opinion leaders is be-
yond the focus of this article; hence, we adopt the simple intuitive measure PageRank
to select opinion leaders. With PageRank, according to the network structure, we select
the top 1% of users who have the highest PageRank scores as opinion leaders and
the rest as ordinary users. Then, we examine the probabilities that two users (A and
B) have a directed social relationship (from higher social-status user to lower social-
status user), such as advisor-advisee relationship. Figure 9 shows some interesting
discoveries. First, in all of the Enron, Coauthor, and MobileD networks, opinion lead-
ers (detected by PageRank) are more likely (+71%–+156%) to have a higher social
status than ordinary users. Second and also more interestingly, in Enron, it is likely
that ordinary users have a higher social status than opinion leaders. Its average like-
lihood is much larger (30 times) than that in the Coauthor network. The reason might
be that in the enterprise email network, some managers may be inactive, and most
management-related communications were done by their assistants.

Strong Tie Versus Weak Tie. Interpersonal ties generally come in three varieties:
strong, weak, or absent. The strong tie hypothesis implies that one’s close friends tend

6PageRank is an algorithm to estimate the importance of each node in a network [Page et al. 1999].
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Fig. 10. Strong tie versus weak tie. Probabilities of two social ties sharing the same type, conditioned on
whether the two social ties are strong or weak. Average indicates the probability that two random social ties
share the same type. It is clear that on all three datasets, two strong ties result in a higher likelihood to
share the same type than chance, while two weak ties are much more uncertain.

to move in the same circles that he or she does. Acquaintances, by contrast, constitute
a more uncertain and dynamic social relationship. Thus, intuitively, a user may have
similar types of relationships with friends of strong ties and more diverse relationships
with friends of weak ties. Thus, we examine how the types of social ties are correlated
with their strength.

For simplicity, we quantify the strength of a social tie in the following ways.7 In
the Coauthor network, for each relationship, we count the number of publications
coauthored by the linked two authors. In the MobileD network, the strength of each
social tie is quantified by the number of calls/text messages made between the linked
two persons. In Enron, the strength is estimated by the number of emails sent between
two users.8 Then, we rank all social ties according to the strength and take the top
one-third as strong ties and the rest as weak ties.

Figure 10 shows the likelihood of two social ties sharing the same type, conditioned
on whether the two social ties are strong or weak. It clearly illustrates that in all the
datasets, two strong ties result in a higher likelihood to share the same type than
chance, while two weak ties are much more uncertain: the likelihood of two weak ties
sharing the same type is merely one-ninth of that of two random social ties on both
Enron and Coauthor.

Summary. According to these statistics, we hav